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Abstract. Special Core Analyses (SCAL) involve intricate measurements with various sources of 
uncertainty, both evident and subtle. While pressure transducers and flowmeters contributions are clear, 
factors such as dead volumes, delays in measuring produced volumes and pressures, and compressibility of 
flow lines present hidden challenges. Additionally, unique issues like fractional flow in outlet pipelines, 
fluid trapping, and line leakage further complicate the analyses. These uncertainties may correlate, and 
isolated propagation could overestimate confidence intervals. To address this, covariance between variables  
must be considered, using either prior knowledge or scenario simulations through methods like Monte Carlo. 
Analytical approaches offer quick results and insight into interdependencies, aiding the identification and 
mitigation of critical uncertainty sources. However, over- or underestimating confidence intervals remain a 
risk if interdependence is poorly understood. For properties derived through optimization, such as transient 
regime relative permeability curves, numerical methods are more suitable as they surpass analytical 
approaches in reliability and utility. This study delivers a comprehensive analysis of uncertainty sources and 
their interdependencies, proposing an analytical framework for uncertainty propagation. Additionally, it 
emphasizes numerical methodologies for determining robust confidence intervals in scenarios where 
analytical methods are limited. The integration of both techniques enhances SCAL reliability and accuracy. 

1 Introduction  
Every measurement inherently has associated 
uncertainties; therefore, no measurement should be 
reported without its accompanying uncertainty. 
Furthermore, the corrected evaluation of the NPV (Net 
Present Volume) and the NP (Net Production) and their 
uncertainties is very important to avoid decision errors 
and disappointments [1]. However, in certain cases, 
evaluating uncertainty is highly complex. Special Core 
Analysis (SCAL) uncertainties are undoubtedly complex, 
particularly relative permeability is really challenging [2]; 
however, from a pragmatic perspective, it is possible to 
estimate an approximate level of uncertainty in the 
analyses. The objective of this text is to establish a 
preliminary approach to determining the uncertainty in 
SCAL analyses, evaluating many sources of uncertainty 
and its impact on SCAL measurements. 

As Pore Volume and Absolute Permeability are used 
in the special core analysis they will be addressed as well. 

In addition to evaluating experimental uncertainties, it 
is important to assess the uncertainty resulting from the 
interpretation process of these data for generating the 
curve, especially in transient regime cases where 
determining the curve does not result directly from raw 
data applied to a mathematical equation. The uncertainty 
of processing test data in the transient regime is addressed 
only preliminarily in this text, as it requires more 
extensive ongoing research and will be explored in future 
projects. 

Evaluating uncertainty through systematic repetition 
of tests (Type A uncertainty evaluation [3]) is simpler to 
obtain and robust in one aspect: it does not rely on 
modeling the variables affecting the process, which might 
be incomplete or flawed. However, it is less robust 

regarding variability across cases: after a  set of tests with 
a specific sample under particular conditions, one arrives 
at an uncertainty associated with that sample and those 
conditions. Such uncertainty would not be valid for 
distinct conditions (different fluids, different 
temperatures) or a  different sample (much smaller, larger, 
more/less permeable), or even the same sample if it had 
been altered between experiments. 

In cases of analyses involving large volumes without 
significant variation in conditions/samples, this type of 
statistical uncertainty evaluation is advisable. However, 
this is not the case here, where repeating the same test in 
sufficient quantity for statistically representative 
uncertainty/repeatability is infeasible, and the samples 
might be affected by the test, conditioning, or handling. 

On the other hand, the evaluation presented here (Type 
B uncertainty evaluation [3]), if the model is accurate, 
would predict the confidence interval, as this (except for 
gross or systematic errors) results from measured and 
included associated uncertainties. In other words, the 
repetition of an analysis, with a certain level of 
confidence, should fall within the estimated confidence 
interval. 

Data used in simulation cells involve at least three 
levels of uncertainties cumulatively. The first level refers 
to laboratory measurement (or Digital Rock Physics 
characterization) uncertainty for the property of a  specific 
rock sample. The second level involves the property 
variability within a “similar” samples group (rocktyping). 
The third level concerns uncertainty in upscaling from 
sample scale (after rocktyping) to simulation cell scale. 
This article aims to provide a broad range of uncertainty 
sources and to describe methodologies for determining 
uncertainties in laboratory measurements (the first level 
mentioned). 
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2 General Sources of Uncertainty  

2.1 Transducers Precision 

Measuring instruments are typically marketed with 
predefined uncertainty specifications. However, for a 
more robust precision estimation, the calibration process 
should include the development of a  calibration curve that 
correlates the instrument's direct response (e.g., voltage or 
current) to the desired measurement parameter (e.g., 
pressure, differential pressure, temperature, mass, flow 
rate). This curve should encompass multiple calibration 
points distributed across the instrument's measurement 
range. Such an approach allows for the determination of a  
regression model and the establishment of confidence 
intervals for the measurements, as outlined by De Groot 
and Schervish [5]. 

2.2 Sample Geometry 

The interpretation of most petrophysical tests assumes 
that the sample possesses a perfectly cylindrical 
geometry. However, imperfections in the sample’s 
geometry introduce uncertainties into the measured 
properties. This study does not address how various 
geometric imperfections, such as lack of perpendicularity, 
lack of parallelism of flow faces, ovalization, conicity, 
and surface irregularities, impact the estimated properties, 
as cylindrical samples are generally deemed sufficiently 
accurate, nevertheless, it should be studied with more 
detail in the future. Instead, the focus here is on the 
uncertainties associated with the fundamental geometric 
properties of the cylinder itself: diameter and length. 

 
Measuring these geometric properties is typically a 

straightforward and fast process. This enables the 
inference of uncertainties based on repeated 
measurements (using calibrated equipment with high 
accuracy). Nevertheless, it is recommended to perform 
more than 30 repetitions to ensure adequate statistical 
representation (for a  normally distributed property, 30 
observation result in a 13% difference between the 
standard deviation of the experimental standard deviation 
of the mean relative to the standard deviation of the mean 
[3]). However, such a procedure may be impractical in 
routine laboratory workflows. An alternative approach is 
to work with the propagation of individual measurement 
uncertainties (arising from the calibration of measuring 
instruments against calibration standards, for instance) to 
the target property value. 

Traditional measurement methods, such as those using 
calipers, introduce an additional source of error that is not 
captured by the uncertainty specifications of the 
instruments themselves. This operational error includes 
factors such as variations in the pressure applied to the 
instrument and improper alignment during measurement. 
While these types of errors can be captured when 
uncertainty is estimated through statistically 
representative repetition (Type A), they are not accounted 
for in the propagation of uncertainties to the target 
property value. Proper training of laboratory personnel 

and the use of measuring instruments that are less 
susceptible by operational errors are critical for mitigating 
these issues. 

Beyond operational errors, some geometry flaws like 
the lack of perpendicularity or parallelism can also 
introduce uncertainties due to the creation of void 
volumes or unaccounted dead volumes, as well as 
operational issues such as the loss of confinement sleeves.  

2.3 Confining Pressure 

It is widely recognized that confining pressure has a 
significant impact on various special core analysis 
properties. However, this is primarily a matter of 
representativeness rather than measurement uncertainty, 
unless the absence of enough confining pressure leads to 
a flow bypass through the space between the sleeve and 
the sample.  

One aspect worth discussing is how the uncertainty in 
confining pressure measurements might affect the 
representativeness of the results. Specifically, as the 
measured property usually is intended to be representative 
of a  specific confining pressure condition, but the actual 
applied condition carries uncertainty, the sensitivity of the 
property to confining pressure propagates this uncertainty 
into the measured property. 

Another important consideration is the very definition 
of representative confining pressure. Determining the 
most representative hydrostatic confining pressures to 
reflect the in-situ stress state of reservoir rocks involves 
various uncertainties and simplifications. However, this 
aspect lies beyond the scope of the present study 

2.4. Pore Geometry Changes 

Standard petrophysical characterization should be 
conducted on rocks whose porous geometry remains 
unchanged throughout the testing process (if variations in 
porous geometry are critical to the process, they should be 
addressed separately). However, certain interactions 
between the rock and the fluids used, such as dissolution 
and precipitation, clay swelling, movement of fines and 
grains, and rock compaction (under the same pressure 
conditions), can significantly impact both basic and 
special petrophysical properties, changing pore volumes, 
permeabilities, and pore distribution. 

While these phenomena may be considered more as 
errors or issues in the testing process rather than 
uncertainties, awareness of these sources of variation in 
measured properties is essential.  

2.5. Density and Viscosity 

Viscosity and density can be obtained through two main 
approaches:  
1. estimation using established correlations 
2. direct measurement.  

2.1. measured independently of the analysis where 
the information will be used  

2.2. measured under the same conditions and at the 
same time the analysis is being conducted. 
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In situations where viscosity and density are measured 
or applied directly, the calibration of the instrument 
becomes the primary source of input uncertainty in the 
propagation process, as discussed in Section 2.1. 

If viscosity and density are measured beforehand or 
estimated using correlations, they are typically defined as 
functions of pressure and temperature. In this case, 
uncertainties in the measurement of pressure and 
temperature must be propagated to the final result, along 
with the inherent uncertainty of the density or viscosity 
correlation with respect to temperature and pressure. 

2.6. Pressure Drop 

The measurement of absolute and effective permeability 
relies on determining the pressure drop between the inlet 
and outlet faces of the sample (in some equipment, it is 
also possible to assess pressure along the sample; the 
uncertainty associated with this type of measurement is 
beyond the scope of this text). Certain equipment, 
particularly those used for gas flow measurements to 
determine absolute permeability, measures pressure at a 
certain distance from the sample face. In these cases, there 
is a  pressure drop between the sample face and the 
pressure measurement point that needs to be modeled, 
introducing uncertainties into the measurement. 

In single-phase flows, this modeling can be performed 
by measuring the pressure drop in the inlet and outlet 
sections under varying flow rate and pressure conditions, 
then applying the modeled pressure drop under the 
conditions of the test. In addition to the uncertainty 
associated with the regression used in the modeling, the 
propagation of uncertainties in pressure and temperature 
measurements during the test must also be considered in 
the estimation of the pressure drop. 

A simplified modeling approach involves measuring 
the total pressure drop (inlet and outlet) using the 
differential pressure sensor of the equipment in an 
analysis without the rock sample. The total pressure drop 
must then be distributed between the inlet and outlet 
sections based on secondary modeling, which introduces 
additional uncertainties. 

In non-single-phase scenarios, the situation becomes 
more challenging, as saturation, phase distribution, flow 
pattern and fluid positioning within the tubing impacts the 
pressure drop, making the modeling significantly less 
precise. 

2.7. Inlet and Outlet Headers 

Holder headers serve as flow distributors at the inlet face 
and flow collectors at the outlet face. One of their roles is 
to ensure the most homogeneous distribution of flow 
across the sample faces, avoiding significant pressure 
gradients or regions with inadequate fluid supply. Since 
this phenomenon is still being evaluated, no method is 
proposed in this paper to estimate the uncertainty resulting 
from the lack of pressure homogeneity at the inlet and 
outlet due to the headers. Some authors propose additional 
features to ensure the homogeneity of injection/collect 

flow like discarding sections of the sample or using metal 
mesh after the diffusor [4] 

Another critical characteristic of headers is avoiding 
fluid entrapment during flow, which would primarily 
impact saturation measurements. In saturation 
evaluations, it can be considered that part of the volume 
in the grooves of the headers contributes to saturation 
uncertainty. The percentage to be accounted for will 
depend on the flow behavior within each header design, 
and the impact on the final result will depend on the ratio 
between the porous volume of the sample and the volume 
of the header grooves. 

2.8. Dead Volumes 

Dead volumes refer to fluid regions that delay or impact 
pressure and production measurements in non-single-
phase flows. In this study, they are categorized into three 
groups: delay volumes, excess volumes, and contact 
volumes, as described below and shown in fig.1. 

1. Delay volumes represent regions where the fluid 
present does not affect the quantity of the monitored 
production fluid (typically the fluid present is the same 
fluid being injected into the sample) but introduces a delay 
between the moment the produced fluid exits the sample 
and the moment it is accounted for by a measurement 
method. 

2. Excess volumes consist of additional fluid that is 
included in the monitored production and needs to be 
subtracted from the production data. It is possible for fluid 
volumes in the system to simultaneously act as both 
excess and delay volumes. 

3. Contact volumes consist of fluid regions that are in 
contact with the main flow but should not be produced. 
However, due to differences in density, instability at fluid 
interfaces, or pressures induced by the flow, these fluids 
may be produced, affecting both the timing of monitored 
production and the monitored volume. Common locations 
for these fluids included within multi-way valves, headers 
with multiple inlets, and pressure taps. 

 

 
Fig. 1. Dead Volumes Scheme for an Unsteady State water-
oil relative permeability test 

Delay and excess dead volumes must be measured and 
used to correct production times and volumes. They can 
be measured by flowing sequence of immiscible fluids 
through the tubing filled, measuring the displaced 
volume, or by using gas expansion (the same way the 
porosity is usually measured). Larger dead volumes result 
in greater uncertainties that propagate to the final results. 
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Contact dead volumes should ideally not be produced 
and therefore should not be accounted for. However, 
depending on the design of the equipment and the flow 
conditions, they may be partially or fully produced, 
resulting in an additional source of uncertainty/error to the 
results. 

2.9. Tilted Bedding 

The inclination of layers relative to the sample axis 
introduces an artifact, as the imposed flow through 
inclined layers, driven by the sample confinement, creates 
a scenario that deviates from the reservoir’s reality, 
affecting both the pressure differential and the actual 
sweep, as shown in fig.2.  

 
Fig. 2. Tomographic imaging and determination of porosity 
and residual oil saturation through tomographic imaging in 
non-parallel bedding sample showing an increase in oil 
saturation due to sweep efficiency artifact. 

The saturation map (fig.2a) shows oil residue (green  
color) increased in a probable (the imaging was done after 
the injection, in a static condition) stagnated corner of the 
sample. The saturation profile (fig. 2b) shows a different 
trend between porosity and oil saturation, that can be 
partially result of boundary end effects, but as shown in 
the saturation map, is, at least partially, influenced by the 
layering.  

2.10. Sample Heterogeneity 

Most SCAL tests treat samples as black boxes, without 
accounting for internal variability in properties and 
physical states, such as saturation, pressure, salinity 
concentration, among others. The interpretation of raw 
test data is typically performed under the assumption of 
property homogeneity, using modeling approaches that 
rely on this assumption.  

Sample heterogeneity can lead to modeling failures, 
errors, and uncertainties in the characterized properties. It 
is not possible to establish confidence intervals to 
adequately address deviations from the optimal scenario. 
Therefore, it is recommended to exercise caution in 
sample selection, incorporating microtomographic image 
analysis during the screening phase. Additionally, when 
heterogeneity cannot be avoided within the facies being 

characterized at the laboratory sample scale, it is 
advisable to include information on the distribution of 
properties and states (like saturation maps during the test) 
during data acquisition and the experimental modeling of 
the heterogeneous sample. 

3 Routine Core Analysis  
In addition to the sources of uncertainty mentioned 
earlier, some are specific to each technique. This section 
will describe specific sources of uncertainty associated 
with Routine Core Analysis.  

3.1. Absolute Permeability 

3.1.1 Klinkenberg Estimation 

The property required for reservoir rock 
characterization is absolute permeability (𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 ), which is 
an intrinsic property of the rock and independent of the 
type and pressure of fluids. However, the gas permeability 
depends on the pressure used to measure the permeability, 
resulting in a “apparent permeability” (𝑘𝑘𝐴𝐴𝐴𝐴 ). Klinkenberg 
[6] modelled this behavior and his model can be used to 
“convert” the apparent permeability in the absolute 
permeability. 

Absolute permeability can be measured using several 
main approaches: 

1. Performing multiple steady-state measurements of 
apparent permeabilities at different pressures and using 
linear regression to obtain absolute permeability (and the 
Klinkenberg parameter);  

2. Repeating the procedure described in item 1 across 
multiple samples of a  specific rock type to determine a 
representative Klinkenberg parameter for that rock type as 
a function of absolute permeability, and applying this 
parameter to similar rocks to avoid repeated tests when a 
large number of analyses are required; 

3. Utilizing literature correlations (fig.3) to estimate 
the Klinkenberg parameter as a function of absolute 
permeability and applying this parameter to convert 
apparent permeability into absolute permeability; 

4. Measuring gas permeability under transient flow 
conditions and modeling the pressure decay process, 
incorporating the Klinkenberg effect to determine 
absolute permeability and the Klinkenberg parameter that 
fits the pressure history; 

5. Directly measuring permeability using liquids. 
Each method for measuring and calculating absolute 

permeability has its own sources of uncertainty and 
specificities. The linear regression method, based on 
multiple apparent permeability measurements from the 
same sample, involves uncertainties related to the 
measurement of apparent permeability itself, the 
measurement and calculation of mean gas pressure, the 
Klinkenberg model itself, and the linear regression  
process.  

When calculations rely directly on the Klinkenberg 
parameter modeled for similar samples, like in methods 2 
and 3, above, additional uncertainty arises from the 

a) 

b) 
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“rocktyping” process. Using literature regressions  
introduces greater dispersion as the definition of 
“similarity” for rock typing becomes less restrictive. 
Therefore, estimates using literature data are generally 
more uncertain than correlations derived from samples 
within the same reservoir or area. 

 
Fig. 3. Klinkenberg Parameter and absolute permeability 
correlation from Jones S.C. [7]. 

3.1.2 Forcheimmer Effect 

Darcy's law is valid for laminar flows, but at higher flow 
velocities, second-order effects can influence the 
relationship between flow potential and flow rate. At low 
flow rates, these second-order effects are generally 
negligible. However, as flow rates increase, deviations 
from Darcy's linearity can impact uncertainty if modeling 
continues to assume the linear relationship predicted by 
Darcy's law. The impact of deviations from Darcy's 
predicted linearity will not be evaluated in this study but 
should be addressed in future work. 

3.2. Porosity and Grain Density 

3.2.1 Void Volumes 

Measurements of porosity and grain density typically rely 
on the determination of void volumes within a system to 
calculate pore volumes and solid volumes. The most 
commonly used method for void volume measurement 
involves applying the ideal gas law (PV = nRT) during 
gas expansion processes. In each expansion process, 
measurements are conducted at three distinct locations: 1) 
In the reference chamber and lines, before the expansion; 
2) In the lines and sample location, before the expansion; 
3) In the total system combining both (1+2), after the 
expansion. 

The void volume (𝑉𝑉𝑣𝑣) is then calculated by: 

𝑉𝑉𝑣𝑣 = 𝑉𝑉1

𝑃𝑃1
𝑇𝑇1
− 𝑃𝑃3
𝑇𝑇3

𝑃𝑃3
𝑇𝑇3
−
𝑃𝑃2
𝑇𝑇2

 (1) 

The numerical indexes represent the three possible 
locations/moments mentioned above. 

To calculate pore volume or solid volume, it is 
necessary to measure or define pressures, volumes, and 
temperatures six times (three locations/moments - 1, 2 and 
3 at the equation 1 - with and without the sample in the 
system). 

The volume of reference chambers and lines (𝑉𝑉1 ) is 
typically calibrated beforehand, and its uncertainties must 

be quantified during the calibration process. The lines and 
void spaces connected to the sample location can either be 
calibrated beforehand or evaluated using two consecutive 
void volume measurements, with and without the sample 
in the system. The pressure at the sample location (𝑃𝑃2 ) is 
often not measured but assumed to be atmospheric 
(Patm). If proper precautions are not taken to avoid 
residual pressures at this position, measurement errors 
may be introduced. Regardless, there is uncertainty in 𝑃𝑃2  
when it is measured and an exacerbated uncertainty when 
it is assumed as 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 . 

An additional source of uncertainty beyond those 
associated with the measuring instruments is the 
representativeness of the temperature measurements. 
Ideally, the temperatures should reflect the condition of 
the gas; however, temperature sensors are often not in 
direct contact with the gas but rather positioned in the 
laboratory environment, the equipment surroundings, or 
the external wall of the gas tube or cylinder. Even if the 
temperature were measured directly in the gas, spatial 
temperature variations could occur, for example, between 
the sections inside and outside the equipment. 

3.2.2 Additional Masses 

Another source of uncertainty that must be considered in 
porosity and grain density measurements arises from the 
inclusion of materials added to the sample, such as 
encapsulating sleeves and materials used to remove 
surface irregularities. Each added material must be 
accounted for in the calculation, introducing uncertainties 
related to their masses and volumes. 

3.2.3 Porous Volume by Weight 

It’s possible to calculate the pore volume by weight (as 
shown in Equation 2). It is representative of a  non-
confining state and can be more suitable for non-confining 
tests like centrifuge capillary pressure, for instance. 

𝑉𝑉𝑝𝑝𝑝𝑝 =
𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠
 (2) 

Where 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠  e 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑  are respectively the mass of the 
liquid-saturated sample (which will be displaced during 
centrifugation) and 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠  is the density of the saturating 
fluid. 

Besides the uncertainty propagated from the sources 
of data used in the Equation 2, this kind of pore volume 
estimation has additional sources of uncertainty due to the 
trapped gas and solution gas (not presented when 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 was 
measured). 

4 Special Core Analysis 

4.1. General Sources of SCAL Uncertainties 

4.1.1 Capillary End Effects 

Special Core Analysis tests typically involve two fluids, 
often immiscible, which result in capillary pressures and 
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wettability effects within the sample and at the interface 
between the sample and the external medium (diffusors 
fluid conduits).  

Internal capillary effects, if the physical conditions are 
similar to those observed in the reservoir, are 
representative of the reservoir behavior. However, 
capillary effects at the interface between the sample and 
the external medium would only be representative of 
specific regions of the reservoir, such as the interface with 
the wellbore wall, open fractures, or cavities. Thus, 
sample edges capillary effects are considered laboratory 
artifacts and must be corrected during property 
characterization. This correction introduces uncertainties 
related to the modelling of the phenomenon, the 
homogeneity of the sample, and the measurements 
required for the model calculations, such as the 
representative capillary pressure of the porous medium. 

Uncertainty in capillary pressure can be incorporated 
by accounting for it during the history-matching process 
of laboratory tests, like in multi-rate unsteady state 
relative permeabilities tests.  

4.1.2 Production Completeness 

Fluid displacement in tests such as relative permeability 
and capillary pressure can be very slow, and complete 
production  (no displaced fluid production, evaluated by 
the production tendency over time) may not be achieved 
within timeframes that meet the demand for timely 
information. Consequently, in some cases, experiments 
are concluded under conditions where production, despite 
having ceased for some time, clearly remains at a  non-
negligible distance from its asymptote, as observed in the 
production curve behavior. 

This production uncertainty can be significant since 
there is no clear threshold to determine the achievement 
of complete production. In infinite time or infinite 
pressure scenarios, extrapolating the production trend 
could lead to saturation values approaching zero. 
However, practical limits exist, such as maximum 
pressure and time in capillary pressure tests, fractional 
flows, injected porous volumes, and time in relative 
permeability tests, where additional production would no 
longer be relevant to the reservoir. 

Analytical approaches or history marching may 
attempt to propose extrapolations of the production curve, 
taking care not to select extrapolations that lead to 
unreasonable scenarios. To incorporate uncertainties, 
multiple extrapolations can be evaluated, ensuring they fit 
the data while yielding distinct production outcomes. 

4.2. Relative Permeability 

4.2.1 Fluids, Tubing and Pore Compressibility 

In relative permeability tests, the pressures applied to 
fluids, tubing, and the porous medium can be significant 
and may result in volume changes due to the 
compressibility of these components. 

Volume variations can lead to saturation errors if not 
accounted for, or to propagated uncertainties if 

considered, arising from pressure measurements and 
compressibility characterization. 

For example, dead volumes are typically measured 
under a specific fluid pressure condition. If the tests are 
conducted under different pressure conditions, the dead 
volumes will be affected, with greater impact as the dead 
volumes and the compressibility of the tubing increase. 

Production measurements performed under conditions 
different from those of the fluids in the sample also need 
to be corrected using the appropriate Formation Volume 
Factor (FVF). While this correction is generally 
performed, it introduces uncertainties propagated from 
pressure measurements and the uncertainty associated 
with the fluid's Formation Volume Factor. 

Using a sample at a  pressure different from that used 
to calculate its reference pore volume, or changes in the 
pore volume during the relative permeability test, also 
requires production corrections. As with any correction, 
this introduces uncertainties propagated from the primary 
sources. 

4.2.2 Relative Permeability Reference 

The permeability presented in the curves is the relative 
permeability relative to a certain reference permeability. 
Therefore, relative permeability includes an additional 
source of uncertainty: the uncertainty of reference 
permeability. If the reference is the effective permeability 
to oil itself, the relative permeability at the initial point is, 
by definition, Kro = 1, meaning there is no additional 
propagation of uncertainty stemming from this definition. 
Nevertheless, even if the laboratory curve has been 
referenced by Kro at the initial point, to apply the 
information at the reservoir cell the reference with the 
Absolute Permeability needs to be set somewhere along 
the upscaling process. 

4.2.3 Gravitational Divergence 

When relative permeability tests are conducted in a 
horizontal orientation, it is generally assumed that, due to 
the sample's small size, there is no significant tendency 
for fluid separation based on density. This assumption is 
typically applied to fluids with similar densities, such as 
water and oil. Tests involving gas at low pressures are 
commonly conducted with the sample positioned 
vertically, as the non-divergence assumption does not 
appear valid. However, even in water and oil scenarios, it 
is reasonable to assume that some level of divergence may 
occur. This source of uncertainty will not be explicitly  
addressed in this study, but it should be considered in 
future evaluations. 

Implicitly, density differences can be factored into the 
uncertainty by incorporating the sample's inclination 
angle relative to the horizontal as a  source of uncertainty. 
This approach does not directly evaluate gravitational 
divergence, which can occur even with a perfectly 
horizontal sample, but by accounting for uncertainty in 
the sample's tilt, an estimate of divergence uncertainty 
may be indirectly introduced. 
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4.3. Centrifuge Capillary Pressure 

4.3.1 Capillary Pressure 

The capillary pressure in the analysis using the centrifuge 
is based on a direct calculation described in equations 3 
and 4 for a  specific point of the sample. 

The capillary pressure is at its maximum at the face 
where the displacing fluid enters the sample and is given, 
in the case of a  less dense displacing fluid, by: 

𝑃𝑃𝑐𝑐 =
1
2𝜔𝜔

2𝛥𝛥𝛥𝛥�𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜2 − 𝑅𝑅𝑖𝑖𝑖𝑖2� (3) 

And, in the case of a  denser displacing fluid, 

𝑃𝑃𝑐𝑐 =
1
2𝜔𝜔

2𝛥𝛥𝛥𝛥�𝑅𝑅𝑖𝑖𝑖𝑖2 − 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜2� (4) 

This calculation and the associated measurements 
have various sources of uncertainty. The density of the 
fluids is one of them, as mentioned in section 2.5. 
Additionally, there is uncertainty related to the rotation 
used in centrifugation, which is associated with 
measurement uncertainty and the imposition of rotation, 
i.e., errors in the control of the centrifuge's rotational 
speed, as well as uncertainty related to the outer and inner 
radii resulting from the flattening or deformation of the 
cups, non-standard assembly, sample irregularities, and 
measurements taken at an angle. 

4.3.2 Saturation 

Saturation is another critical point in estimating the 
capillary pressure curve and is susceptible to a large 
number of sources of uncertainty. 

The main sources of uncertainty in measuring 
saturation are related to the density of the displaced fluid, 
the porous volume by weight used as a reference for 
obtaining saturation, parallax error, which is a  reading 
uncertainty also associated with the length-volume 
conversion in manually performed readings on scales. 
When volume readings are conducted using cameras, the 
reading uncertainty will be related to the camera 
resolution (pixel size), the pixel-volume conversion, and 
the accuracy of the reading at the interface between the 
fluids. 

4.3.3 Reading Uncertainty 

For the determination of saturation associated with 
capillary pressure through centrifugation, calibrated cups 
are utilized. Half of the smallest scale division is regarded 
as its maximum precision, if measuring the production 
visually, or the volume measured by the camera pixel 
length, if measuring the production using a camera. In this 
type of measurement, there is a  conversion between the 
measured length and the associated volume, thus the 
reading error in volume varies according to the scale's 
precision; which is constrained by human visual 
capability when readings are taken with the naked eye; 

and is also dependent on the length-volume conversion 
that varies based on the containers employed. 

4.3.4 Parallax Error 

In any visual measurement of lengths, which is the case 
for indirect volume readings based on the meniscus 
position in the production collector, there exists the issue 
of parallax, which is exacerbated in the centrifuge by the 
difficulty of positioning for accurate reading.  

The parallax in volume (ℓ𝑝𝑝𝑝𝑝) is calculated by: 

ℓ𝑝𝑝𝑝𝑝 =
𝜋𝜋  ℓ𝑙𝑙

4  
𝑑𝑑𝑖𝑖𝑖𝑖2 (𝑑𝑑𝑒𝑒𝑒𝑒 − 𝑑𝑑𝑖𝑖𝑖𝑖)

2𝑑𝑑𝑙𝑙 +  (𝑑𝑑𝑒𝑒𝑒𝑒 − 𝑑𝑑𝑖𝑖𝑖𝑖) (5) 

Where 𝑑𝑑𝑖𝑖𝑖𝑖  is the internal diameter of the cup, 𝑑𝑑𝑒𝑒𝑒𝑒  the 
external diameter of the cup, ℓ𝑙𝑙 the deviation from the 
correct reading position, 𝑑𝑑𝑙𝑙 the distance from the cup to 
the measurement reader. 

4.3.5 Uncertainty of length-volume conversion  

The collection cups for produced fluid and reading have a 
linear scale that indicates how far the meniscus between 
two fluids is from a reference point. This distance is 
associated with a certain volume of fluid displaced as a 
function of the cross-sectional area open for fluid 
collection. 

The cups used in centrifugation have variation in the 
value of the cross-sectional area in relation to the 
reference value (used for length-volume conversions) and 
also in relation to their position along the axis of the cup. 

Another aspect that can affect this uncertainty is the 
pressure on the cup (due to the rotation of the centrifuge) 
and the temperature of the centrifugation environment 
(which can affect the area due to the expansion of 
materials, but also due to changes in pressure resistance). 

 4.3.7 Modeling uncertainty 

The centrifugation technique does not directly measure 
capillary pressure curves but uses mathematical models to 
deduce them from experimental measurements. 

To obtain the fluid saturation at the face of the sample 
where the capillary pressure (Pc) is maximum, the 
relationship between average saturation and point 
saturation is used, given by: 

𝑆𝑆𝑓𝑓� =
1

𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜− 𝑅𝑅𝑖𝑖𝑖𝑖
� 𝑆𝑆(𝑅𝑅)𝑑𝑑𝑑𝑑
𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜

𝑅𝑅𝑖𝑖𝑖𝑖
 (6) 

It is not possible to invert Equation 6 to obtain point 
saturation directly, as it is a  first kind Volterra integral [8].  
Many of the methods proposed in the literature use 
approximations of the saturation equation, with varying 
degrees of accuracy, which can introduce additional 
uncertainties to the saturation estimates, as shown by 
Forbes [9]. 

The main sources of uncertainty introduced by solving 
Equation 6 are the assumption of null capillary pressure at 
the fluid outlet face; the assumption of sample 
homogeneity; the use of parameterized curves for model 
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fitting; the assumption of constant saturation in planes 
parallel to the faces of the sample or correction of radial 
effects; the assumption of constant saturation in the 
vertical direction of the sample or correction of 
gravitational effects; and uncertainties in the geometry of 
the sample and the rotation radii. 

5 Uncertainty Propagation (Analytical 
Approach) 
The propagation of uncertainties is calculated based on 
the sensitivity of the quantified characteristic in relation 
to the measured variables and their uncertainties: 

𝜎𝜎𝑓𝑓(𝑥𝑥)
2 = ��

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

𝜎𝜎𝑥𝑥𝑖𝑖�
2

𝑖𝑖

 (7) 

In the case of fitting correlations, according to De 
Groot & Schervish [5], in addition to the propagation of 
uncertainties in the data (𝜎𝜎𝑥𝑥𝑖𝑖 ), it is also necessary to 
incorporate the uncertainties of the fitting parameters (𝜎𝜎𝛽𝛽𝑗𝑗) 
and their covariances (𝑐𝑐𝑐𝑐𝑐𝑐�𝛽𝛽𝑗𝑗𝛽𝛽𝑘𝑘�): 

𝜎𝜎𝑓𝑓(𝑥𝑥,𝛽𝛽)
2 = ��𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
𝜎𝜎𝑥𝑥𝑖𝑖�

2

𝑖𝑖

+ ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑗𝑗

𝜎𝜎𝛽𝛽𝑗𝑗�
2

𝑗𝑗

+ 2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑘𝑘

𝑐𝑐𝑐𝑐𝑐𝑐�𝛽𝛽𝑗𝑗𝛽𝛽𝑘𝑘�
𝑗𝑗 ,𝑘𝑘

 
(8) 

5.1 Absolute Permeability 

Klinkenberg [6] proposed a correlation between the 
measured permeability (apparent permeability) and 
absolute permeability, given by: 

𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑘𝑘𝐴𝐴𝐴𝐴 �1 + �
𝑏𝑏
𝑃𝑃�

 ��
−1

 (9) 

If 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴  and 𝑏𝑏 are estimated by the fit of the analysis 
repetition at various average pressures (method 1 of 
section 3.1.1) the uncertainty can be estimated by the fit 
uncertainty (eq. 8) if the amount of measurements is large 
enough to be statistically representative.  

If  𝑏𝑏 is estimated by its correlation with the absolute 
permeability and 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴  is calculated by the Equation (9), 
the propagation of uncertainty as a function of the 
independent sensitivity of each parameter is calculated by 
Equation (7). 

The uncertainty of the average pressure, 𝑃𝑃� , must take 
into account the modeling of inlet and outlet pressure 
losses (𝑃𝑃𝐷𝐷 ). If these losses are measured together, and the 
ratio between inlet pressure loss (𝑃𝑃𝐷𝐷1 ) and outlet pressure 
loss (𝑃𝑃𝐷𝐷2 ) is modeled by 𝑅𝑅 = 𝑃𝑃𝐷𝐷1 𝑃𝑃𝐷𝐷2⁄  , and the measured 
pressures are the inlet pressure (𝑃𝑃1) and differential 
pressure (∆𝑃𝑃), (instead of measuring outlet pressure, 𝑃𝑃2 )  
then: 

𝑃𝑃� = 
2 (𝑃𝑃1 − 𝑅𝑅 𝑃𝑃𝐷𝐷) − (∆𝑃𝑃 −𝑃𝑃𝐷𝐷 )

2  (10) 

The uncertainties of pressure transducers and 
differential pressure should come from their calibration, 
as discussed in Section 2.1. The uncertainty of pressure 

loss must originate from the modeling of pressure loss as 
a function of flow rate and pressure, and preferably 
temperature. If modeling temperature sensitivity is not 
feasible, tests should be conducted at the same 
temperature as the pressure loss correlation. Even so, a 
component of underestimated uncertainty will remain. 

The ratio between inlet and outlet pressure losses must 
be modeled in some way. An analysis of the lengths of 
involved lines can be used in modeling, considering 
uncertainties in line lengths as one of the sources of 
uncertainty for 𝑅𝑅. 

Apparent permeability is calculated based on Darcy’s 
law, considering the measurement of 𝑃𝑃1  and ∆𝑃𝑃 and the 
pressure losses in the lines, it can be written as: 

𝑘𝑘𝐴𝐴𝐴𝐴 =
8 𝑃𝑃𝐵𝐵  𝑄𝑄𝐵𝐵 𝜇𝜇 𝐿𝐿

 𝜋𝜋 𝐷𝐷2 (∆𝑃𝑃 −𝑃𝑃𝐷𝐷 ) (2 𝑃𝑃1 − ∆𝑃𝑃 + (1− 2 𝑅𝑅) 𝑃𝑃𝐷𝐷) (11) 

Where 𝐿𝐿 and 𝐷𝐷  are sample length and diameter, 
respectively,  𝑄𝑄𝐵𝐵 is the flow rate measured at a  pressure 
𝑃𝑃𝐵𝐵 , and 𝜇𝜇 is the fluid viscosity. 

The uncertainty of apparent permeability can be 
obtained through uncertainty propagation, as shown in 
Equation (7). 

Another source of uncertainty for absolute 
permeability is the Klinkenberg parameter. Except for 
transient measurements, the other acquisition modes, 
presented in Section 3.1.1, rely on fitting correlations, 
which can have their uncertainties estimated from 
Equation (8). 

When estimating the Klinkenberg parameter from a 
function of absolute permeability, an additional 
transformation is needed (to change known variable to 
apparent permeability) and introduce uncertainty. If the 
function is a  power function: 

𝑏𝑏 = 𝐶𝐶1𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶2 (12) 
From the relationship between apparent and absolute 

permeabilities, it is possible, through algebraic 
manipulation, disregarding some higher order terms, to 
derive the following expression for the Klinkenberg 
parameter as a function of known information, the 
apparent permeability: 

𝑏𝑏 =
𝑃𝑃�

2𝐶𝐶2
�−1 −�1 + 4

𝐶𝐶2
𝑃𝑃�
𝐶𝐶1 𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶2� +𝑂𝑂 �𝐶𝐶1

𝑏𝑏
𝑃𝑃�
� (13) 

This transformation relies on a simplification that 
introduces a truncation on the order of 𝐶𝐶1

𝑏𝑏
𝑃𝑃�
 and the 

resulting uncertainty is: 

𝜎𝜎𝑏𝑏 = �� �
𝜕𝜕𝜕𝜕(𝑘𝑘𝐴𝐴𝐴𝐴, 𝐶𝐶1,𝐶𝐶2,𝑃𝑃�)

𝜕𝜕𝑥𝑥𝑖𝑖
 𝜎𝜎𝑥𝑥𝑖𝑖�

2

𝑖𝑖
+ 𝑂𝑂�𝐶𝐶1

𝑏𝑏
𝑃𝑃�
� (14) 

5.2 Effective Porosity 

Effective porosity (φ𝑒𝑒𝑒𝑒) is typically calculated based on 
the relationship between the solid volume and the pore 
volume of the sample. These volumes are determined 
either through two consecutive measurements: one with 
the sample and one without it using the same system, or a 
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single measurement with the sample, combined with a 
calibration representing the system in the absence of the 
sample. All measurements and calibrations are performed 
using the gas expansion model described in Equation (1). 

For the solid volume (𝑉𝑉𝑆𝑆), the measured void volume 
(𝑉𝑉𝑣𝑣 ) with the sample is referred to as the “Full Chamber 
Volume” or 𝑉𝑉𝐹𝐹𝐹𝐹 , while the measured void volume 
(𝑉𝑉𝑣𝑣 ) without the sample, “Empty Chamber Volume” or 
𝑉𝑉𝐸𝐸𝐸𝐸 . The total volume of any material added to the sample 
is represented by  ∑ 𝑉𝑉𝑚𝑚𝑚𝑚𝑖𝑖 , determined beforehand. The 
solid volume is then calculated as: 

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝐸𝐸𝐸𝐸 − 𝑉𝑉𝐹𝐹𝐹𝐹 −�𝑉𝑉𝑚𝑚𝑚𝑚
𝑖𝑖

 (15) 

For the pore volume (𝑉𝑉𝑃𝑃), the measured void volume 
(𝑉𝑉𝑣𝑣 ) with the sample in the holder is 𝑉𝑉𝑆𝑆𝑆𝑆 . The line volume 
(𝑉𝑉𝐿𝐿 ) and its uncertainty, as well as the volume of any 
added material (V𝑣𝑣𝑣𝑣) must be measured beforehand, to the 
sample. The pore volume is given by: 

𝑉𝑉𝑃𝑃 = 𝑉𝑉𝑆𝑆𝑆𝑆− 𝑉𝑉𝐿𝐿 −�𝑉𝑉𝑣𝑣𝑣𝑣
𝑖𝑖

 (16) 

Each measurement and calibration must have its 
uncertainty estimated by applying the gas expansion 
model (Equation 1) within the uncertainty propagation 
equation (Equation 7). 

Uncertainty in measurements can be determined based 
on the average of several measurements to increase the 
precision of the results. However, it is essential to 
consider the uncertainties and errors associated with two 
main factors: (i) temperature variations between the 
calibration and measurement times, as changes in 
temperature can affect the system's behavior and the 
obtained results, and (ii) operational issues, such as 
system assembly and equipment setup, which can 
introduce errors if not properly controlled. The 
temperature variations can be minimized using similar 
temperatures between calibration and measurement times 
or modelling the system’s behavior with the temperature 
changes. In the later, the model and temperature 
uncertainties can be propagated to the final results by 
using the sensitivity approach (eq. 7). The operational 
issues have to be minimized by a proper personnel 
training and the uncertainty/errors introduced can’t be 
estimated in a Type B uncertainty evaluation.  

5.3 Relative Permeability 

Relative permeability is defined in terms of reference 
permeability,  

𝑘𝑘𝑟𝑟 =
𝑘𝑘𝑒𝑒𝑒𝑒
𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅

 (17) 

The uncertainty can be calculated using uncertainty 
propagation modeling (Equation 7). 

As mentioned in Section 4.2.2, if the reference is an 
effective permeability point, the relative permeability at 
this saturation is defined as unity, with no additional 
uncertainty from making it dimensionless. 

The uncertainty of effective permeability is calculated, 
in the steady-state regime, through the uncertainty 

propagation of Darcy's law for linear and incompressible 
flow. 

𝑘𝑘𝑒𝑒𝑒𝑒 =
𝑄𝑄 𝜇𝜇 𝐿𝐿

𝜋𝜋  𝐷𝐷2�∆𝑃𝑃 ±  ∆𝜌𝜌 ∙ 𝑔𝑔 ∙ 𝐿𝐿 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)�
 (18) 

Where 𝑄𝑄 is the volumetric flow rate, 𝜇𝜇 is the viscosity 
of the evaluated fluid, 𝐿𝐿 and 𝐷𝐷  are the length and diameter 
of the sample, respectively, ∆𝑃𝑃 is the pressure differential, 
∆𝜌𝜌 is the fluid density difference, required if the 
experiment is not conducted horizontally, and 𝛼𝛼 is the 
angle between the sample's longitudinal axis and the 
horizontal. 

In addition to the uncertainty that can be estimated 
through the application of the propagation equation (7) to 
all observed sources in the equation, there are 
uncertainties associated with factors not modeled by 
Darcy's law, such as sample heterogeneity, instability of 
the advancing front, capillary edge effects, and 
gravitational divergence effects, as mentioned in previous 
sections. These sources will not be addressed in the 
analytical application of uncertainty propagation, but 
some may be considered in the numerical evaluation of 
confidence intervals. 

In the case of relative permeability, each point carries 
uncertainties not only in the permeability itself but also in 
the representative saturation. Saturation uncertainties can 
be estimated based on a progression of saturation 
calculations or the saturation achieved as a function of 
cumulative production. That is, starting from an initially 
known saturation, (𝑆𝑆𝑓𝑓𝑓𝑓), the fluid saturation, (𝑆𝑆𝑓𝑓), is 
calculated by increments or decrements in the fluid 
volume, (∆𝑗𝑗𝑉𝑉𝑓𝑓 ), relative to the porous volume of the 
analyzed sample, (𝑉𝑉𝑃𝑃 ). Thus: 

𝑆𝑆𝑓𝑓 = 𝑆𝑆𝑓𝑓𝑓𝑓 +��±
∆𝑗𝑗𝑉𝑉𝑓𝑓
𝑉𝑉𝑃𝑃

�
𝑁𝑁

𝑗𝑗=1

 (19) 

Applying uncertainty propagation, 

𝜎𝜎𝑆𝑆𝑓𝑓 = �𝜎𝜎𝑆𝑆𝑓𝑓𝑓𝑓
2 +�−

∑ ∆𝑗𝑗𝑉𝑉𝑓𝑓
𝑉𝑉𝑃𝑃2

𝜎𝜎𝑉𝑉𝑉𝑉�
2

+ ��
𝜎𝜎∆𝑗𝑗𝑉𝑉𝑓𝑓
𝑉𝑉𝑃𝑃

�
2𝑁𝑁

𝑗𝑗=1

 (20) 

Another option for volume measurement in tests 
involving liquids without gas in solution is through the 
masses of the produced fluids. This type of measurement 
has a typical uncertainty, which depends on the difference 
between the densities of the produced fluids. 

The volume of a one fluid 𝑉𝑉𝐹𝐹1 can be calculated by  

𝑉𝑉𝐹𝐹1 =
𝑚𝑚𝑇𝑇 − (𝑄𝑄 ∙ 𝑡𝑡)𝜌𝜌𝐹𝐹2

𝜌𝜌𝐹𝐹1− 𝜌𝜌𝐹𝐹2
 (21) 

From the known flow rate (𝑄𝑄) and time (𝑡𝑡), produced 
mass (𝑚𝑚𝑇𝑇 ) and fluids densities (𝜌𝜌𝐹𝐹1 , 𝜌𝜌𝐹𝐹2 ). 

Care must be taken with the pressure and temperature 
conditions in which the flow rate and the fluid densities 
are provided. The uncertainties in reference pressure and 
temperature must also be included in the propagation 
analysis. Since the fluid densities are functions of 
temperature and pressure, and these have uncertainties in 
theirs measurements, the uncertainty can be propagated to 
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volume applying the sensitivity equation (eq. 7) to the 
density equations and then to the volume equation (eq. 21) 

There is also the possibility of determining saturation 
using tomographic imaging acquisition. This type of 
acquisition has uncertainties related to image resolution, 
signal-to-noise ratio, and also characteristics of the 
tomography process, such as the fact that the X-ray beam 
in the laboratory is always polychromatic, and the choice 
of dopant can therefore alter the attenuation values of the 
rock throughout the 3D volume, and consequently, the 
measured saturations. In the authors’ experience, 
saturation uncertainty through tomographic imaging is 
higher than that observed with volume balance methods. 
It is advisable, whenever possible, to perform 
simultaneous saturation measurements using both 
tomography and volumetric techniques in order to reduce 
the uncertainty of both measurements simultaneously. 

In heterogeneous samples, the saturation profiles or 3d 
maps can help to improve the relative permeabilities of a 
porous media, but this process is quite challenging and 
there are ongoing R&D to propose methods to evaluate 
the KR for heterogeneous Brazilian rocks. 

For homogeneous samples, saturation profiles may be 
used to evaluate the boundary effects, reducing the 
uncertainty of the interpretation of this phenomenon when 
compared with modeling the effect using a known 
capillary curve or optimizing one with the experimental 
data when possible. 

5.4 Centrifuge Capillary Pressure 

The capillary pressure uncertainties can be calculated 
applying the uncertainty propagation equation (7) in the 
equations 3 and 4 mentioned in Section 4.3.1 

In the case of capillary pressure by centrifugation, 
each point of capillary pressure is related to a 
representative saturation, just like for relative 
permeability. The uncertainty of saturation in this case 
can be estimated in the same way described in section 5.3, 
taking into account the sources of measurement 
uncertainties cited in section 4.3. 

6 Uncertainty Propagation (Numerical 
Approach) 

6.1 Direct Modelling and Numerical Fitting 

When properties are obtained through numerical model 
fitting to experimental data, such as relative permeability 
curves under transient conditions, uncertainty propagation 
cannot be adequately addressed using purely analytical 
methods. In such cases, numerical approaches based on 
inverse modeling and two-phase flow simulation are 
employed, allowing for more robust estimation of 
parameters and their associated confidence intervals 
[11,12]. 

The procedure involves the numerical solution of the 
extended two-phase Darcy equations, accounting for 
capillary pressure effects, fluid compressibility, and the 
functional dependence of properties on saturation. The 

model is calibrated against experimental data —such as 
pressure readings, produced volumes, and, when 
available, spatial saturation profiles— using optimization 
algorithms like the Levenberg-Marquardt method or 
sampling-based probabilistic approaches such as Markov 
Chain Monte Carlo (MCMC) [12,13]. The fitting process 
consists of minimizing an objective function, commonly 
defined as: 

𝜒𝜒2 = ��
𝑑𝑑𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒− 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑖𝑖
�
2

𝑖𝑖

 (22) 

where 𝑑𝑑𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 represents the experimental observation, 

𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the corresponding model prediction, and 𝜎𝜎𝑖𝑖 is the 
measurement uncertainty associated with point 𝑖𝑖. 

6.2 Inverse Problem Formulation 

The success of this process depends directly on how the 
inverse problem is formulated. While the forward 
modeling provides the physical basis for simulating 
multiphase flow, it is during the inversion step that 
internal properties of the porous medium are inferred from 
observations. This formulation involves adopting reduced 
parametric representations for the relative permeability 
and capillary pressure curves, limiting the number of 
parameters to be estimated. Two of the most used 
parameterizations in this context are the Corey Model and 
LET Model [15]. 

The choice between these functions depends on the 
balance between representational flexibility and inversion 
robustness. Simpler models, such as Corey, reduce the 
risk of overfitting but may fail to capture more complex 
nonlinear behaviors. In contrast, more flexible 
parameterizations, like the LET model, expand the 
solution space but increase the risk of non-uniqueness 
[11,15]. 

Furthermore, the inverse problem is inherently ill-
posed: multiple combinations of parameters may 
adequately reproduce the same experimental data, 
especially when the quantity or diversity of data is limited. 
This leads to solution non-uniqueness and requires that 
the model be properly constrained by informative data 
that are consistent with the physics of the system [16]. An 
additional challenge arises from the simplifications 
commonly adopted in forward modeling. Simulations are 
often performed in one-dimensional, homogeneous, and 
isotropic domains, which, although computationally 
efficient, may introduce bias if they do not adequately 
represent the actual experimental conditions. Therefore, 
effective inverse problem formulation requires a careful 
balance between model complexity, the type and amount 
of observational data, and the acceptable level of 
uncertainty in the interpretation [14]. 

6.3 Optimization Strategies and Uncertainty 
Quantification 

The choice of optimization algorithm becomes a key 
factor in determining the quality of the solution obtained 
and, more importantly, in quantifying the uncertainties 



The 36th International Symposium of the Society of Core Analysts 

associated with the estimated parameters. Different 
methods exhibit varying capabilities in exploring the 
solution space and capturing the effects of nonlinearity 
and parameter correlations. The Levenberg-Marquardt 
method, which is deterministic and gradient-based, is 
computationally efficient and enables uncertainty 
estimation through the covariance matrix, given by: 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝜎𝜎2. (𝐽𝐽𝑇𝑇𝐽𝐽)−1 (23) 

where 𝐽𝐽 is the Jacobian matrix of the objective function 
with respect to the model parameters. This matrix 
quantifies both the individual uncertainties and the 
correlations between parameters, providing a clear view 
of the sensitivity structure of the problem. However, as a 
local method, Levenberg-Marquardt may converge to 
local minima and may not fully capture the uncertainty 
extent in systems with multiple plausible solutions. 

To overcome these limitations, the MCMC approach 
has been widely adopted as a complementary tool. By 
sampling from the posterior probability distribution of the 
parameters, MCMC provides more realistic and robust 
credibility intervals, even in underdetermined problems or 
highly nonlinear settings. Studies by Berg et al. [13] show 
that this approach enables the identification of plausible 
solution regions, reveals multiple minima, and helps 
understand the correlation structure between estimated 
parameters through error ellipses and marginal 
distributions. The combination of both techniques, 
Levenberg-Marquardt for efficient fitting and MCMC for 
in-depth uncertainty assessment, offers a  solid framework 
for the numerical interpretation of core flooding 
experiments. 

Numerical uncertainty propagation is particularly 
valuable in scenarios where experimental data are limited 
or when the objective is to identify which parameter 
combinations are consistent with the available 
observations. Beyond enabling more robust 
interpretation, this approach can also be used predictively 
to guide experimental design, helping define boundary 
conditions and data acquisition strategies—such as multi-
rate tests or in situ saturation monitoring—to enhance 
parameter identifiability. Recent studies by Berg et al. 
[11,12,13] show that, even under idealized conditions 
using synthetic simulations, achieving reliable solutions 
requires properly conditioning the inverse problem with 
multiple sources of information. 

Results 
The methodology proposed was applied to some Routine 
Core Analysis and, for the cases tested, the most important 
source of uncertainty was the sample geometry (measured 
by caliper, 3 times), followed by the fluid viscosity, as 
shown in Figure 4. 
 

 
Fig. 4. Apparent Permeability Uncertainty Sensitivity. 

The uncertainties of Relative Permeability sources are 
being used as input to the MCMC method, but the 
application of the sensitivity analysis can help us to 
understand how the different sources of uncertainty 
contribute to the final uncertainty. 
In an USS KR analysis of a  1,5” sample (with 0,1cm 
caliper uncertainty), 1cm³/min flow rate (and flow rate 
uncertainty of 0,01cm³/min), viscosity of 6cP (with  
0,15cP uncertainty) and a pressure transducer with 0,1psi 
uncertainty, permeabilities up to 100mD can be measured 
with good precision for smaller samples, but the 
transducer uncertainty becomes rapidly important for 
higher permeabilities, what can be seen at Figure 5. 

 
Fig. 5. Effective Permeability Uncertainty Sensitivity to the 
Sample Length. 

For the same data mentioned above, but fixing sample 
length in 5cm, analyzing the sensitivity to the flow rate, it 
can be seen (fig. 6) that for flow rates above 0,5cm³/min 
and absolute permeabilities bellow 100mD, the 
uncertainties are reasonably low. Bellow 10mD there is 
no improvement on uncertainty due to sources that does 
not depend on differential pressure. 

 
Fig. 6. Effective Permeability Uncertainty Sensitivity to the 
Flow Rate. 

In a KR USS test of sample with Pore Volume uncertainty 
of 0,1cm³, and the equipment with volume measurement 
uncertainty of 0,1cm³, an inlet dead volume of 0,5 cm³ and 
an outlet dead volume of 1,0cm³ (both with 0,1cm³ 
uncertainty) the (total not relative) saturation uncertainty 
increases through test time as shown in Figure 7. At the 
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test beginning and after each change in saturation 
direction, the dead volumes increase significantly the total 
uncertainty. 

 
Fig. 7. Saturation uncertainty increase through time. 

If the volume was measured step by step, the scenario 
would be worse, since each measurement uncertainty 
would be added to the final uncertainty. 

Conclusion 
There are numerous sources of uncertainty in routine and 
special core analysis tests, and these uncertainties interact 
with the properties measured in complex ways, making 
the estimation of uncertainties a highly intricate task. 

Within the scope of this article, some of those 
uncertainties were analyzed, and methods for quantifying 
the resulting uncertainties were reviewed or proposed. 
However, further exploration of these sources and the 
processes of uncertainty propagation would require 
considerably more space and examples. Nonetheless, 
based on the insights provided in this study, it is possible 
to establish a framework for estimating uncertainties in 
basic and special petrophysical analyses. 

A careful assessment of uncertainty sources and their 
impact on the resulting uncertainties enables laboratories 
involved in rock property characterization to focus on 
reducing the most critical uncertainties while avoiding 
analyses where the levels of uncertainty result in non-
representative values. Moreover, this evaluation is crucial 
for data users, who can incorporate measured property 
uncertainties into reservoir models, thereby yielding more 
reliable confidence intervals in reserve estimation and 
production scenario forecasting. 
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